Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.023
Filter
1.
J Morphol ; 285(5): e21699, 2024 May.
Article in English | MEDLINE | ID: mdl-38715161

ABSTRACT

In 1974, Sue Herring described the relationship between two important performance variables in the feeding system, bite force and gape. These variables are inversely related, such that, without specific muscular adaptations, most animals cannot produce high bite forces at large gapes for a given sized muscle. Despite the importance of these variables for feeding biomechanics and functional ecology, the paucity of in vivo bite force data in primates has led to bite forces largely being estimated through ex vivo methods. Here, we quantify and compare in vivo bite forces and gapes with output from simulated musculoskeletal models in two craniofacially distinct strepsirrhines: Eulemur, which has a shorter jaw and slower chewing cycle durations relative to jaw length and body mass compared to Varecia. Bite forces were collected across a range of linear gapes from 16 adult lemurs (suborder Strepsirrhini) at the Duke Lemur Center in Durham, North Carolina representing three species: Eulemur flavifrons (n = 6; 3F, 3M), Varecia variegata (n = 5; 3F, 2M), and Varecia rubra (n = 5; 5F). Maximum linear and angular gapes were significantly higher for Varecia compared to Eulemur (p = .01) but there were no significant differences in recorded maximum in vivo bite forces (p = .88). Simulated muscle models using architectural data for these taxa suggest this approach is an accurate method of estimating bite force-gape tradeoffs in addition to variables such as fiber length, fiber operating range, and gapes associated with maximum force. Our in vivo and modeling data suggest Varecia has reduced bite force capacities in favor of absolutely wider gapes compared to Eulemur in relation to their longer jaws. Importantly, our comparisons validate the simulated muscle approach for estimating bite force as a function of gape in extant and fossil primates.


Subject(s)
Bite Force , Animals , Biomechanical Phenomena , Jaw/anatomy & histology , Jaw/physiology , Lemur/physiology , Lemur/anatomy & histology , Mastication/physiology , Male , Female
2.
Am J Biol Anthropol ; 184(1): e24916, 2024 May.
Article in English | MEDLINE | ID: mdl-38441408

ABSTRACT

OBJECTIVES: Studies on oral processing are often snapshots of behaviors that examine feeding through individual bouts. In this study, we expand on our previous work comparing bite/chew variables per feeding bout to summed daily biting, chewing, and food intake to interpret loading that could have potential morphological effects. MATERIALS AND METHODS: We observed sympatric Lemur catta and Propithecus verreauxi over two field seasons in the dry forest of Bezà Mahafaly Special Reserve in southwestern Madagascar. Bite and chew rates determined from videos filmed during observations were multiplied with time spent feeding on specific foods during focal follows to calculate daily values for each feeding bout. Food mechanical properties (FMPs) were tested on dietary items with a portable tester. We contrasted daily bite/chew numbers and intake with FMPs, species, season, and food shape. RESULTS: Daily bite and chew numbers increased with maximum, but not average, food toughness. Daily intake decreased with average and maximum toughness. Season had a strong effect on daily bites and chews, but not on intake. Food shape influenced intake and total bite and chew numbers. The lemur species did not differ in our models. DISCUSSION: Maximum food toughness impacted feeding behaviors and intake, which is consistent with higher loads having a greater effect on morphology. In contrast to feeding per bout, cumulative biting and chewing did not differ between species; taking feeding frequency into consideration affects interpretation of jaw loading. Finally, biting, as much as chewing, may generate strains that impact morphology.


Subject(s)
Lemur , Lemuridae , Succinimides , Animals , Lemur/anatomy & histology , Diet , Food
3.
PLoS One ; 19(3): e0300972, 2024.
Article in English | MEDLINE | ID: mdl-38536831

ABSTRACT

Madagascar has a harsh and stochastic climate because of regular natural disturbances. This history of regular cyclones has been hypothesised to have directed evolutionary changes to lemur behaviour and morphology that make them more resilient to sudden environmental change. These adaptations may include: small group sizes, high degrees of energy-conserving behaviours, generalist habitat use, small home ranges, small body size, and a limited number of frugivorous species. To date, however, no one has tested how variation in cyclone exposure across Madagascar is associated with variation in these resilience traits. In this study, we created a detailed cyclone impact map for Madagascar using Koppen-Geiger climate class, historical cyclone tracks, the Saffir Class of cyclone and hurricane intensity, and precipitation data. We also used existing literature to calculate a resilience score for 26 lemur species for which data existed on resilience traits. Our cyclone impact map was then overlaid on known geographic ranges of these species and compared to resilience score while controlling for phylogenetic non-independence and spatial autocorrelation. We found no association between cyclone impact in a lemur range and their resilience score. When assessing traits individually, however, we found that cyclone impact was positively associated with body size, suggesting that the more impacted a species is by cyclones the smaller they are. We also found cyclone impact to be negatively associated with frugivory, with species in higher impact zones eating more fruit. While unexpected, this could reflect an increased production in fruit in tree fall gaps following cyclones. While we did not find a pattern between cyclone impact and behavioural resilience in lemurs, we suggest a similar study at a global scale across all primates would allow for more taxonomic variation and reveal larger patterns key to understanding past and future vulnerability to natural disturbances in primates.


Subject(s)
Cyclonic Storms , Lemur , Strepsirhini , Animals , Phylogeny , Ecosystem , Demography , Madagascar
4.
Sci Rep ; 14(1): 3631, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351102

ABSTRACT

Primates have varied vocal repertoires to communicate with conspecifics and sometimes other species. The larynx has a central role in vocal source generation, where a pair of vocal folds vibrates to modify the air flow. Here, we show that Madagascan lemurs have a unique additional pair of folds in the vestibular region, parallel to the vocal folds. The additional fold has a rigid body of a vocal muscle branch and it is covered by a stratified squamous epithelium, equal to those of the vocal fold. Such anatomical features support the hypothesis that it also vibrates in a manner like the vibrations that occur in the vocal folds. To examine the acoustic function of the two pairs of folds, we made a silicone compound model to demonstrate that they can simultaneously vibrate to lower the fundamental frequency and increase vocal efficiency. Similar acoustic effects are achieved using different features of the larynx for the other primates, e.g., by vibrating multiple sets of ventricular folds in several species and further by an evolutionary modification of enlarged larynx in howler monkeys. Our multidisciplinary approaches found that these functions were acquired through a unique evolutionary adaptation of the twin vocal folds in Madagascan lemurs.


Subject(s)
Lemur , Vocal Cords , Animals , Vocal Cords/physiology , Laryngeal Muscles , Vibration , Acoustics
5.
Am J Primatol ; 86(5): e23609, 2024 May.
Article in English | MEDLINE | ID: mdl-38409820

ABSTRACT

The degree of dietary flexibility in primates is species specific; some incorporate a wider array of resources than others. Extreme interannual weather variability in Madagascar results in seasonal resource scarcity which has been linked to specialized behaviors in lemurs. Prolemur simus, for example, has been considered an obligate specialist on large culm bamboo with >60% of its diet composed of woody bamboos requiring morphological and physiological adaptations to process. Recent studies reported an ever-expanding list of dietary items, suggesting that this species may not be an obligate specialist. However, long-term quantitative feeding data are unavailable across this species' range. To explore the dietary flexibility of P. simus, we collected data at two northern sites, Ambalafary and Sahavola, and one southern site, Vatovavy, from September 2010 to January 2016 and May 2017 to September 2018, respectively. In total, we recorded 4022 h of behavioral data using instantaneous sampling of adult males and females from one group in Ambalafary, and two groups each in Sahavola and Vatovavy. We recorded 45 plant species eaten by P. simus over 7 years. We also observed significant differences in seasonal dietary composition between study sites. In Ambalafary, bamboo was the most frequently observed resource consumed (92.2%); however, non-bamboo resources comprised nearly one-third of the diet of P. simus in Sahavola and over 60% in Vatovavy. Consumption of all bamboo resources increased during the dry season at Ambalafary and during the wet season at Vatovavy, but never exceeded non-bamboo feeding at the latter. Culm pith feeding was only observed at Ambalafary, where it was more common during the dry season. We identify P. simus as a bamboo facultative specialist capable of adjusting its feeding behavior to its environment, indicating greater dietary flexibility than previously documented, which may enable the species to survive in increasingly degraded habitats.


Subject(s)
Lemur , Lemuridae , Female , Male , Animals , Madagascar , Lemuridae/physiology , Lemur/physiology , Feeding Behavior/physiology , Diet/veterinary
6.
Environ Sci Pollut Res Int ; 31(14): 20898-20924, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379042

ABSTRACT

As the global greenhouse effect intensifies, carbon emissions are gradually becoming a hot topic of discussion. Accurate carbon emissions prediction is an important foundation to realize carbon neutrality and peak carbon dioxide emissions. To accurately predict carbon emissions, a multi-factor combination prediction model based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), bidirectional long short-term memory optimized by lemurs optimizer (LOBiLSTM) and least squares support vector machine optimized by lemurs optimizer (LOLSSVM), named ICEEMDAN-LOBiLSTM-LOLSSVM, is proposed. Firstly, the influencing factors of carbon emissions are selected by Spearman correlation coefficient, and carbon emissions are decomposed into intrinsic mode functions (IMFs) by ICEEMDAN. Secondly, the influencing factors and IMFs are input into LOBiLSTM and LOLSSVM respectively for prediction. Then, the point prediction results are obtained by weighting the prediction results of LOBiLSTM and LOLSSVM. Finally, probability density function of point prediction error is calculated by kernel density estimation, and the interval prediction results are calculated according to different confidence intervals. Carbon emissions of China and Germany are selected to verify the superiority of ICEEMDAN-LOBiLSTM-LOLSSVM. The experiment shows that RMSE, MAE, MAPE, and R2 of the proposed model are 0.4468, 0.3612, 0.0120, and 0.9839 respectively for China, which is the best among the nine models, as well as for Germany.


Subject(s)
Lemur , Animals , Carbon Dioxide , China , Germany , Greenhouse Effect
7.
Zoo Biol ; 43(3): 236-254, 2024.
Article in English | MEDLINE | ID: mdl-38345149

ABSTRACT

Due to their potential impact on population growth, many studies have investigated factors affecting infant survival in mammal populations under human care. Here we used more than 30 years of Association of Zoos and Aquariums (AZA) studbook data and contraception data from the AZA Reproductive Management Center, along with logistic regression models, to investigate which factors affect infant survival in four Eulemur species managed as Species Survival Plans® in AZA. Across species, infant survival to 1 month ranged from 65% to 78%. Previous experience producing surviving offspring was positively correlated to infant survival in collared (Eulemur collaris), crowned (Eulemur coronatus), and mongoose (Eulemur mongoz) lemurs. Both dam age and previous use of contraception were negatively correlated to infant survival for collared lemurs, though our results suggest the latter may be confounded with other factors. Blue-eyed black lemurs (Eulemur flavifrons) were affected by birth location, suggesting differences in husbandry that may affect infant survival. These results can be used to assist in reproductive planning or to anticipate the likelihood of breeding success. Population managers may also be able to focus their reproductive planning on younger dams or those with previous experience to predict successful births. Future studies should seek to determine what aspects of previous dam success are most important to infant survival, investigate sire-related factors, and examine factors related to cause of death in infants that may lead to differential survival. Our hope is to present a framework that may be useful for investigating infant survival in other mammal species' breeding programs.


Subject(s)
Animal Husbandry , Animals, Zoo , Animals , Female , Animal Husbandry/methods , Lemuridae/physiology , Male , Animals, Newborn , Reproduction/physiology , Lemur/physiology
8.
Commun Biol ; 7(1): 57, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191649

ABSTRACT

The lemur family of protein kinases has gained much interest in recent years as they are involved in a variety of cellular processes including regulation of axonal transport and endosomal trafficking, modulation of synaptic functions, memory and learning, and they are centrally placed in several intracellular signalling pathways. Numerous studies have also implicated role of the lemur kinases in the development and progression of a wide range of cancers, cystic fibrosis, and neurodegenerative diseases. However, parallel discoveries and inaccurate prediction of their kinase activity have resulted in a confusing and misleading nomenclature of these proteins. Herein, a group of international scientists with expertise in lemur family of protein kinases set forth a novel nomenclature to rectify this problem and ultimately help the scientific community by providing consistent information about these molecules.


Subject(s)
Cystic Fibrosis , Lemur , Animals , Protein Kinases , Phosphorylation , Axonal Transport
9.
Am J Primatol ; 86(4): e23599, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244194

ABSTRACT

The urgent need for effective wildlife monitoring solutions in the face of global biodiversity loss has resulted in the emergence of conservation technologies such as passive acoustic monitoring (PAM). While PAM has been extensively used for marine mammals, birds, and bats, its application to primates is limited. Black-and-white ruffed lemurs (Varecia variegata) are a promising species to test PAM with due to their distinctive and loud roar-shrieks. Furthermore, these lemurs are challenging to monitor via traditional methods due to their fragmented and often unpredictable distribution in Madagascar's dense eastern rainforests. Our goal in this study was to develop a machine learning pipeline for automated call detection from PAM data, compare the effectiveness of PAM versus in-person observations, and investigate diel patterns in lemur vocal behavior. We did this study at Mangevo, Ranomafana National Park by concurrently conducting focal follows and deploying autonomous recorders in May-July 2019. We used transfer learning to build a convolutional neural network (optimized for recall) that automated the detection of lemur calls (57-h runtime; recall = 0.94, F1 = 0.70). We found that PAM outperformed in-person observations, saving time, money, and labor while also providing re-analyzable data. Using PAM yielded novel insights into V. variegata diel vocal patterns; we present the first published evidence of nocturnal calling. We developed a graphic user interface and open-sourced data and code, to serve as a resource for primatologists interested in implementing PAM and machine learning. By leveraging the potential of this pipeline, we can address the urgent need for effective primate population surveys to inform conservation strategies.


Subject(s)
Deep Learning , Lemur , Lemuridae , Strepsirhini , Humans , Animals , Madagascar , Parks, Recreational , Acoustics , Mammals
10.
Am J Primatol ; 86(3): e23601, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38284477

ABSTRACT

Nonhuman primates and their habitats are facing an impending extinction crisis. Approximately 69% of primate species are listed by the International Union for Conservation of Nature as threatened and 93% have declining populations. Human population growth (expected to reach 10.9 billion by the year 2100), the unsustainable demands of a small number of consumer nations for forest-risk commodities, deforestation and habitat conversion, the expansion of roads and rail networks, cattle ranching, the hunting and trapping of wild primate populations, and the potential spread of infectious diseases are among the primary drivers of primate population decline. Climate change will only exacerbate the current situation. The time to act to protect primate populations is now! In this special issue of the American Journal of Primatology, we present a series of commentaries, formulated as "Action Letters." These are designed to educate and inform primatologists, conservation biologists, wildlife ecologists, political leaders, and global citizens about the conservation challenges faced by particular primate taxa and particular world regions, and present examples of specific actions that one can take, individually and collectively, to promote the persistence of wild primate populations and environmental justice for local human populations and impacted ecological communities. As scientists, researchers, and educators, primatologists are in a unique position to lead local, national, and international efforts to protect biodiversity. In this special issue, we focus on primates of the Brazilian Amazon, lemurs of northeast Madagascar, Temminck's red colobus monkey (Piliocolobus badius temminckii), night monkeys (Aotus spp.), long-tailed macaques (Macaca fascicularis), the primate pet trade, and professional capacity building to foster conservation awareness and action. We encourage primatologists, regardless of their research focus, to engage in both advocacy and activism to protect wild primate populations worldwide.


Subject(s)
Colobinae , Conservation of Natural Resources , Lemur , Humans , Animals , Cattle , Primates , Animals, Wild , Ecosystem , Biodiversity , Macaca fascicularis
11.
Am J Primatol ; 86(3): e23483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36851838

ABSTRACT

The northeast of Madagascar is as diverse as it is threatened. The area bordering the Analanjirofo and SAVA regions contains six protected areas and at least 22 lemur species. Many applied research and conservation programs have been established in the region with the aim of ensuring both wildlife and people thrive in the long term. While most of the remaining humid evergreen forest of northeast Madagascar is formally protected, the local human population depends heavily on the land, and unsustainable natural resource use threatens this biodiversity hotspot. Drawing from our collective experiences managing conservation activities and research programs in northeast Madagascar, we discuss the major threats to the region and advocate for eight conservation activities that help reduce threats and protect the environment, providing specific examples from our own programs. These include (1) empowering local conservation actors, (2) ensuring effectively protected habitat, (3) expanding reforestation, (4) establishing and continuing long-term research and monitoring, (5) reducing food insecurity, (6) supporting environmental education, (7) promoting sustainable livelihoods, and (8) expanding community health initiatives. Lastly, we provide a list of actions that individuals can take to join us in supporting and promoting lemur conservation.


Subject(s)
Lemur , Lemuridae , Humans , Animals , Madagascar , Conservation of Natural Resources , Ecosystem , Biodiversity
12.
Am J Primatol ; 86(1): e23564, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37839049

ABSTRACT

Insufficient physical activity is a major risk factor for cardiometabolic disease (i.e., unhealthy weight gain, heart disease, and diabetes) in humans and may also negatively affect health of primates in human care. Effects of physical activity on energy expenditure and cardiometabolic health are virtually unstudied in nonhuman primates. We investigated physical activity and metabolic markers in 15 adult ring-tailed lemurs (Lemur catta) and 11 Coquerel's sifakas (Propithecus coquereli) at the Duke Lemur Center during a period of low activity in winter when the animals were housed in buildings (with outdoor access) and a period of high activity when individuals were free-ranging in large, outdoor, forested enclosures. We compared body mass, blood glucose, triglycerides, HDL- and LDL-cholesterol, physical activity via accelerometry, and total energy expenditure (TEE) via the doubly labeled water method (in ring-tailed lemurs only) between both conditions. Both species were more active and had a lower body mass in summer. Ring-tailed lemurs had a higher TEE and lower triglyceride levels in summer, whereas sifaka had higher triglyceride levels in summer. Individuals that increased their activity more, also lost more body mass. Individuals that lost more body mass, also had a positive change in HDL-cholesterol (i.e., higher values in summer). Changes in activity were not associated with changes in markers of metabolic health, body fat percentage and TEE (both unadjusted and adjusted for body composition). Older age was associated with lower activity in both species, and decreased glucose in ring-tailed lemurs, but was otherwise unrelated to metabolic markers and, for ring-tailed lemurs, adjusted TEE. Overall, body mass was lower during summer but the increase in physical activity did not strongly influence metabolic health or TEE in these populations.


Subject(s)
Cardiovascular Diseases , Lemur , Lemuridae , Physical Conditioning, Animal , Animals , Humans , Primates , Triglycerides , Cholesterol
13.
Am J Primatol ; 86(1): e23569, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37899689

ABSTRACT

Deforestation and habitat fragmentation is the primary threat to primate populations. The primates that live within degraded and anthropogenically disturbed habitats typical of fragmented landscapes have to cope with lower availability of resources in comparison to primates in continuous, undisturbed forests. While some species are sensitive to forest fragmentation, some evidence exists to suggest that primates can alter their behavior and adapt to such changes, which enables their survival in suboptimal habitat. In this study, we assessed how forest fragmentation and its associated edge-effects impact the feeding ecology and activity levels of a nocturnal primate community in the Sahamalaza-Iles Radama National Park, North West Madagascar. From March 06, 2019 to May 17, 2022, we collected data on tree and invertebrate phenology at our study site, and feeding ecology and activity for 159 lemur individuals from four species. Fruit and flower availability varied significantly between continuous and fragmented forest, and between forest core and edge areas, with continuous forest exhibiting higher continuous fruit and flower availability. Lemur feeding ecology varied significantly too, as the feeding niches of all four species were significantly different between continuous and fragmented forest and between core and edge areas. However, lemur activity levels were mostly consistent among all forest areas. The results of this study suggest that nocturnal lemurs are able to adapt their dietary ecology in response to the available food sources within their habitat. Due to this flexible ecology and dietary plasticity, the lemurs do not need to significantly alter their behavior in different environments to fulfill their dietary needs. While nocturnal lemurs demonstrate adaptability and flexibility to degraded habitat, it is unclear how far this plasticity will stretch considering that Madagascar's forests are still being cleared at an alarming rate. Urgent conservation action is therefore needed to ensure the future of lemur habitat.


Subject(s)
Lemur , Lemuridae , Strepsirhini , Animals , Lemur/physiology , Madagascar , Ecology , Lemuridae/physiology , Ecosystem , Forests
14.
Emerg Infect Dis ; 29(12): 2587-2589, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987598

ABSTRACT

We diagnosed Mycobacterium tuberculosis in captive lemurs and a fossa in Antananarivo, Madagascar. We noted clinical signs in the animals and found characteristic lesions during necropsy. The source of infection remains unknown. Our results illustrate the potential for reverse zoonotic infections and intraspecies transmission of tuberculosis in captive wildlife.


Subject(s)
Lemur , Mycobacterium tuberculosis , Tuberculosis , Animals , Madagascar/epidemiology , Tuberculosis/veterinary , Animals, Wild , Animals, Zoo
15.
Anim Cogn ; 26(6): 2009-2021, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37792125

ABSTRACT

In studying communicative signals, we can think of flexibility as a necessary correlate of creativity. Flexibility enables animals to find practical solutions and appropriate behaviors in mutable situations. In this study, we aimed to quantify the degree of flexibility in the songs of indris (Indri indri), the only singing lemur, using three different metrics: Jaro Distance, normalized diversity, and entropy. We hypothesized that the degree and the co-variation of the flexibility of indris singing together would vary according to their status and sex. We found that dominant females were more flexible than dominant males when concatenating elements into strings (element concatenation). The number of different elements in a song contribution normalized by the contribution length (contribution diversity) of dominant individuals positively co-varied for seven duetting pairs. Non-dominant individuals were more variable in element concatenation than dominant individuals, and they were more diverse in phrase type than dominant females. Independently from sex and status, individual contributions did not differ in entropy (a measure of the predictability of contributions). These results corroborate previous findings regarding the dimorphism by sex and by status of individual contributions to songs. Thus, they shed light on the presence and expression of flexibility in the behavior of a non-human primate species. Indeed, they potentially show an effect of social features in shaping vocal flexibility, which underlies many communication systems, including human language. We speculate that this degree of flexibility may account for creativity.


Subject(s)
Indriidae , Lemur , Male , Female , Humans , Animals , Vocalization, Animal , Social Behavior , Sex Characteristics
16.
Am J Primatol ; 85(12): e23556, 2023 12.
Article in English | MEDLINE | ID: mdl-37779335

ABSTRACT

One of the most fundamental aspects of a species' behavioral strategy is its activity budget; for primates this generally involves the allocation of available time among resting, feeding, traveling, and social behavior. Comparisons between species, populations, or individuals can reveal divergences in adaptive strategies and current stressors, and reflect responses to such diverse pressures as predation, thermoregulation, nutrition, and social needs. Further, variation across seasons is an important part of behavioral strategies to survive food scarcity; this can involve increasing or decreasing effort. We documented activity over the 24-h cycle for the cathemeral, frugivorous Eulemur fulvus and the diurnal, folivorous Propithecus diadema across 13-18 months at Tsinjoarivo, Madagascar. Their activity budgets were dominated by resting (E. fulvus: 74.1%; P. diadema: 85.2%), followed by feeding (15.8%, 12.4%), traveling (9.31%, 1.74%) and social activities (0.76%, 0.70%), respectively. The lower feeding and higher resting in P. diadema likely reflect slower gastrointestinal transit and higher reliance on microbial fermentation to extract energy from fibrous food. The two species showed opposite lean season strategies. E. fulvus increased activity, with more feeding but less travel time, consistent with a shift to less-profitable fruits, and some leaves and flowers, while increasing feeding effort to compensate ("energy maximizing"). P. diadema showed less variation across months, but the lean season still evoked reduced effort across the board (feeding, travel, and social behavior), consistent with a "time minimizing" strategy prioritizing energy conservation and microbe-assisted digestion. Understanding these divergent shifts is key to understanding natural behavior and the extent of behavioral flexibility under stressful conditions. Finally, the complex patterns of fruit availability (intra- and interannually) and the species' behavioral responses across months underscore the need to move beyond simplistic "lean/abundant season" and "fruit/leaf" dichotomies in understanding underlying energetic strategies, and species' vulnerability to habitat change.


Subject(s)
Lemur , Strepsirhini , Animals , Lemur/physiology , Seasons , Ecosystem , Fruit , Madagascar , Feeding Behavior/physiology
17.
Am J Primatol ; 85(12): e23563, 2023 12.
Article in English | MEDLINE | ID: mdl-37855395

ABSTRACT

Measuring energy balance and energy metabolism can provide crucial information for understanding the ecological and behavioral drivers of an animal's energetic and physiological condition. Both urinary C-peptide (uCP) of insulin and urinary total triiodothyronine (uTT3) have been validated as noninvasive biomarkers of energy balance and metabolic activity in haplorrhine primates. This study attempts to validate uCP and uTT3 measures in strepsirrhines, a phylogenetically distinct primate clade, using the ruffed lemur (genus Varecia) as a model. We experimentally manipulated the diet of captive black-and-white (Varecia variegata) and red (Varecia rubra) ruffed lemurs at Duke Lemur Center across a 4-week period. We collected urine samples from subjects (n = 5) each day during 1 week of control diet, 2 weeks of calorie-restricted diet and 1 week of refeeding, designed to temporarily reduce energy balance and metabolism. We also tested the outcome of filter paper as a storage method by comparing to controls (frozen at -20°C) to assess its suitability for studies of wild populations. We successfully measured uCP and uTT3 levels in frozen urine samples using commercial enzyme immunoassay kits and found that both biomarkers were excreted at lower concentrations (C-peptide: 1.35 ng/mL, 54% reduction; TT3: 1.5 ng/mL, 37.5% reduction) during calorie-restricted periods compared to normal diet periods. Filter paper recovery for uCP was 19%, though values were significantly positively correlated with frozen control samples. uTT3 could not be recovered at measurable concentrations using filter paper. These methods enable noninvasive measurement of energetic conditions in wild strepsirrhines and subsequent assessment of relationships between energy balance and numerous socioecological drivers in primate populations.


Subject(s)
Lemur , Lemuridae , Strepsirhini , Animals , Lemur/physiology , C-Peptide , Triiodothyronine
18.
Philos Trans R Soc Lond B Biol Sci ; 378(1888): 20220218, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37661747

ABSTRACT

Non-human primates are potentially informative but underutilized species for investigating obesity. I examined patterns of obesity across the Primate order, calculating the ratio of body mass in captivity to that in the wild. This index, relative body mass, for n = 40 non-human primates (mean ± s.d.: females: 1.28 ± 0.30, range 0.67-1.78, males: 1.24 ± 0.28, range 0.70-1.97) overlapped with a reference value for humans (women: 1.52, men: 1.44). Among non-human primates, relative body mass was unrelated to dietary niche, and was marginally greater among female cohorts of terrestrial species. Males and females had similar relative body masses, but species with greater sexual size dimorphism (male/female mass) in wild populations had comparatively larger female body mass in captivity. Provisioned populations in wild and free-ranging settings had similar relative body mass to those in research facilities and zoos. Compared to the wild, captive diets are unlikely to be low in protein or fat, or high in carbohydrate, suggesting these macronutrients are not driving overeating in captive populations. Several primate species, including chimpanzees, a sister-species to humans, had relative body masses similar to humans. Humans are not unique in the propensity to overweight and obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.


Subject(s)
Hominidae , Lemur , Strepsirhini , Animals , Humans , Female , Male , Haplorhini , Primates , Obesity/epidemiology , Obesity/etiology , Obesity/veterinary , Pan troglodytes
19.
Viruses ; 15(9)2023 08 26.
Article in English | MEDLINE | ID: mdl-37766228

ABSTRACT

The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).


Subject(s)
Anelloviridae , Bacteriophages , Lemur , Humans , Animals , North Carolina , Pilot Projects , Virome , DNA
20.
Am J Biol Anthropol ; 182(3): 372-387, 2023 11.
Article in English | MEDLINE | ID: mdl-37676062

ABSTRACT

OBJECTIVES: Among living Malagasy primates, the family Lemuridae has previously been recognized as presenting a higher mandibular morphological variation than other families. We conducted a quantitative analysis of mandibular size and shape within the five genera (Lemur, Eulemur, Hapalemur, Prolemur, and Varecia) associated with a set of covariables that could explain this variation. MATERIALS AND METHODS: We used Fourier outline analysis on the left hemimandible of 182 specimens covering the Lemuridae family. The influence of the phylogeny but also seven covariables (genus, diet, sex, sexual behavior, mating system, ecoregion, and forest type) on mandibular variation was examined using multivariate statistics and model selection. RESULTS: Our results indicate that the high level of morphological variation within the family, associated with a phylogenetic effect and differences in diet, is due to a strong distinction between the genera Prolemur and Hapalemur and the other genera of the family. A second analysis, correcting this strong effect, indicates that mandibular shape variation is influenced not only by the phylogeny and the diet but by a combination of all the covariables. DISCUSSION: The analysis of morphological variation is a powerful tool with major applications, both for the estimation of biological diversity and for the understanding of the fundamental parameters of species' ecology. Our work indicates that, if mandibular shape variation is mainly driven by dietary adaptation, other variables describing ecology and habitat should be considered and taken into account for an integrative understanding of species resources and the establishment of conservation measures.


Subject(s)
Lemur , Lemuridae , Humans , Animals , Phylogeny , Lemuridae/anatomy & histology , Mandible/anatomy & histology , Diet
SELECTION OF CITATIONS
SEARCH DETAIL
...